An ADMM algorithm for solving ℓ1 regularized MPC

نویسندگان

  • Mariette Annergren
  • Anders Hansson
  • Bo Wahlberg
چکیده

[1] M. Gallieri, J. M. Maciejowski “lasso MPC: Smart Regulation of OverActuated Systems”, to appear in ACC 2012. [2] M. Annergren, A. Hansson, B. Wahlberg “An ADMM Algorithm for Solving l1 Regularized MPC”, submitted. [3] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers”, Foundations and Trends in Machine Learning 2012.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ADMM Algorithm for Solving l_1 Regularized MPC

We present an Alternating Direction Method of Multipliers (ADMM) algorithm for solving optimization problems with an `1 regularized least-squares cost function subject to recursive equality constraints. The considered optimization problem has applications in control, for example in `1 regularized MPC. The ADMM algorithm is easy to implement, converges fast to a solution of moderate accuracy, an...

متن کامل

Application-Oriented Input Design and Optimization Methods Involving ADMM

is thesis is divided into two main parts. e first part considers applicationoriented input design, specifically for model predictive control (MPC). e second part considers alternating direction method of multipliers (ADMM) for l1 regularized optimization problems and primal-dual interior-point methods. e theory of system identification provides methods for estimating models of dynamical sys...

متن کامل

An Empirical Study of ADMM for Nonconvex Problems

The alternating direction method of multipliers (ADMM) is a common optimization tool for solving constrained and non-differentiable problems. We provide an empirical study of the practical performance of ADMM on several nonconvex applications, including `0 regularized linear regression, `0 regularized image denoising, phase retrieval, and eigenvector computation. Our experiments suggest that AD...

متن کامل

A comparison of the computational performance of Iteratively Reweighted Least Squares and alternating minimization algorithms for ℓ1 inverse problems

Alternating minimization algorithms with a shrinkage step, derived within the Split Bregman (SB) or Alternating Direction Method of Multipliers (ADMM) frameworks, have become very popular for `-regularized problems, including Total Variation and Basis Pursuit Denoising. It appears to be generally assumed that they deliver much better computational performance than older methods such as Iterativ...

متن کامل

Separable Model Predictive Control via Alternating Direction Method of Multipliers for Large-scale Systems

In this paper, an alternating direction method of multipliers (ADMM) based realtime model predictive control (MPC) algorithm is presented. With the use of indicator function and by introducing extra consensus constraints, the constrained MPC problem can be formulated as a separable MPC problem, which can be computed very efficiently by projected gradient descent ADMM update steps and Riccati re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012